

An Evaluation of Graded Sense Disambiguation using Word Sense Induction

David Jurgens
HRL Laboratories, LLC and
University of California, Los Angeles

Talk overview

- Word Sense Disambiguation and Graded Senses Assignment
- Word Sense Induction
- Evaluating Graded Sense Assignments

Talk overview

- Word Sense Disambiguation and Graded Senses Assignment
- Word Sense Induction
- Evaluating Graded Sense Assignments

Word Sense Disambiguation

Goal: Given a usage of a word, determine which meaning is present

John sat on the chair.

- I. a seat for one person, with a support for the back
- 2. the position of professor
- 3. the officer who presides at the meetings of an organization

Mary handed the paper to her professor.

- I. a material made of cellulose pulp
- 2. an essay, especially one written as an assignment
- 3. a daily or weekly publication on folded sheets
- 4. a medium for written communication
- 5. a scholarly article describing the results of observations
- 6. a business firm that publishes newspapers

Mary handed the paper to her professor.

- I. a material made of cellulose pulp
- 2. an essay, especially one written as an assignment
- 3. a daily or weekly publication on folded sheets
- 4. a medium for written communication
- 5. a scholarly article describing the results of observations
- 6. a business firm that publishes newspapers

After working all night writing her assignment, Mary handed the paper to her professor.

- I. a material made of cellulose pulp
- 2. an essay, especially one written as an assignment
- 3. a daily or weekly publication on folded sheets
- 4. a medium for written communication
- 5. a scholarly article describing the results of observations
- 6. a business firm that publishes newspapers

After working all night writing her assignment, Mary handed the paper to her professor.

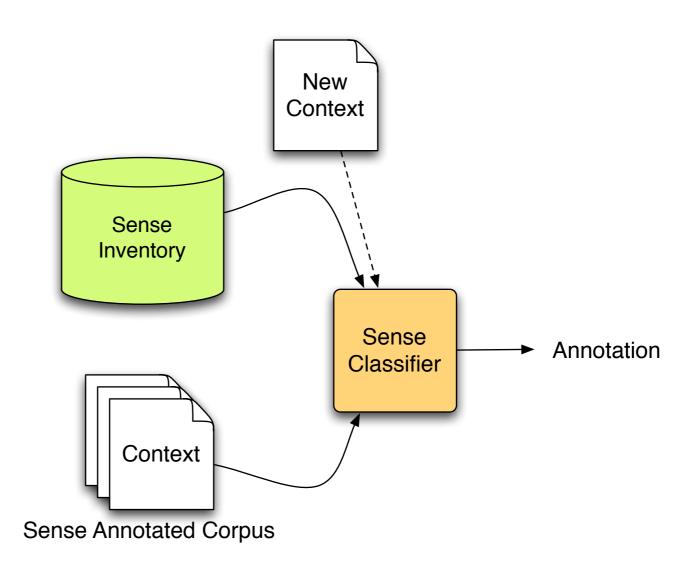
- I. a material made of cellulose pulp
- 2. an essay, especially one written as an assignment
- 3. a daily or weekly publication on folded sheets
- 4. a medium for written communication
- 5. a scholarly article describing the results of observations
- 6. a business firm that publishes newspapers

Most applicable sense

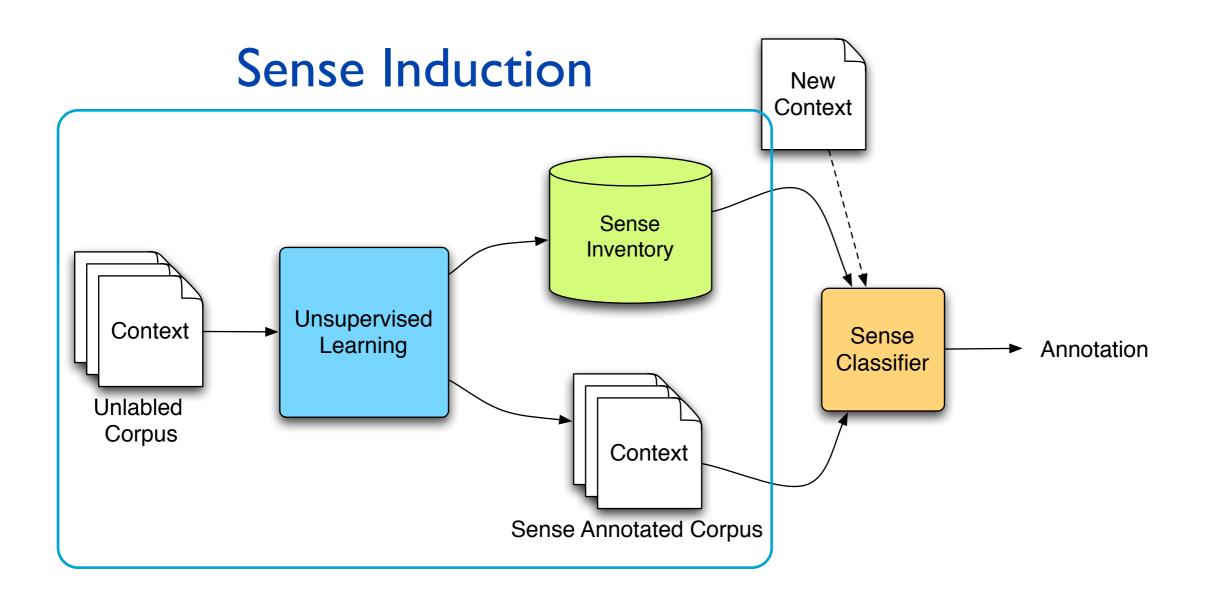
Moderately applicable sense

The goal of Graded Word Sense Disambiguation

- Identify which senses are salient in a given context
- Quality the senses' degree of applicability


Talk overview

- Word Sense Disambiguation and Graded Senses Assignment
- Word Sense Induction
- Evaluating Graded Sense Assignments


Word Sense Disambiguation

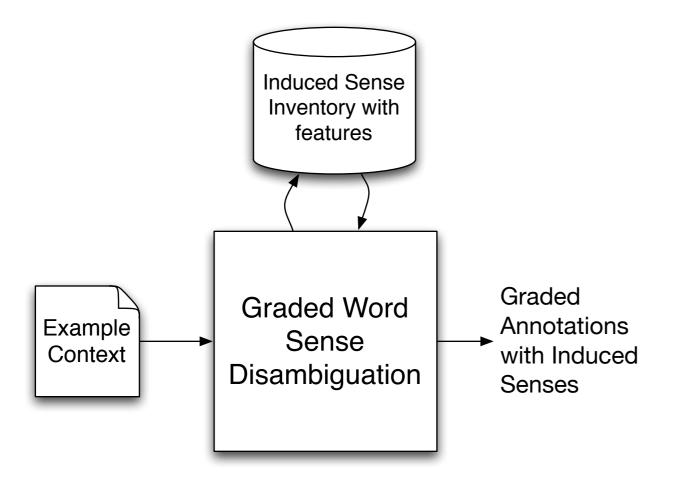
Word Sense Induction automatically learns the sense inventory from contextual examples

Benefits of Sense Induction

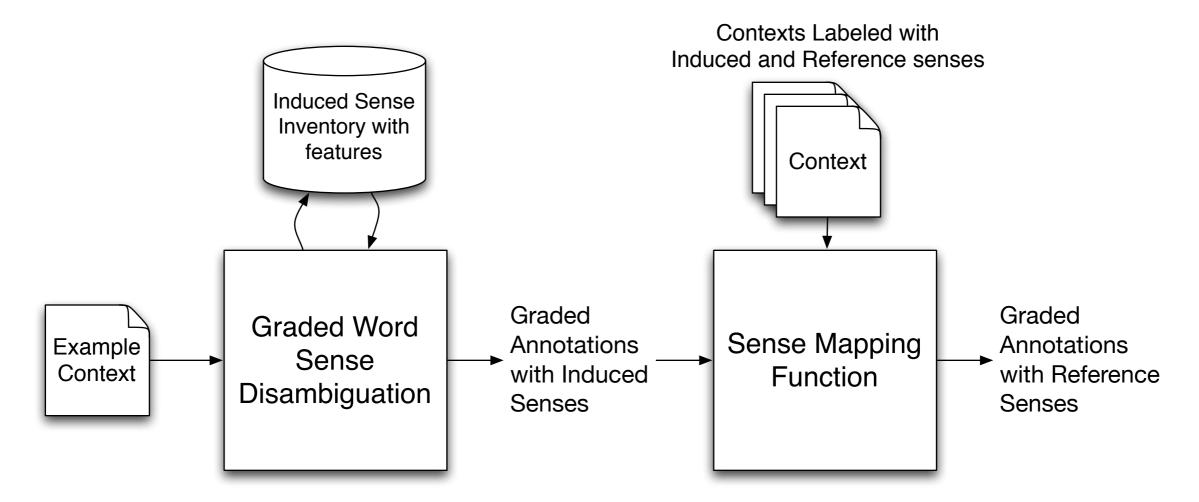
Discovery of corpus-specific senses

- Removes the need for learning sense features from sense-annotated corpora
 - No more annotation bottleneck!

Potential Drawbacks


• What senses are being learned?

• How useful are the learned senses?


Induced senses can be used directly, but often a specific sense inventory is needed

Induced senses can be used directly, but often a specific sense inventory is needed

Produces an end-to-end WSD system with the desired sense labels, using minimal labeled data

Three graph-based WSI methods tested

Korkontzelos and Manandhar (2010)

Jurgens (2011)

Navigli and Crisafulli (2010)

Sense Induction Scope

Nouns, Collocated Nouns Nouns, Verbs, and Adjectives

Nouns, Verbs, and Adjectives

Graph Features

Single Word

All Words

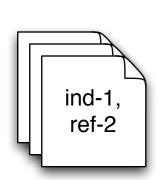
Single Word

Sense Discovery Method

Chinese Whispers (Biemann, 2006)

Link Clustering (Ahn, 2010)

Edge Deletion

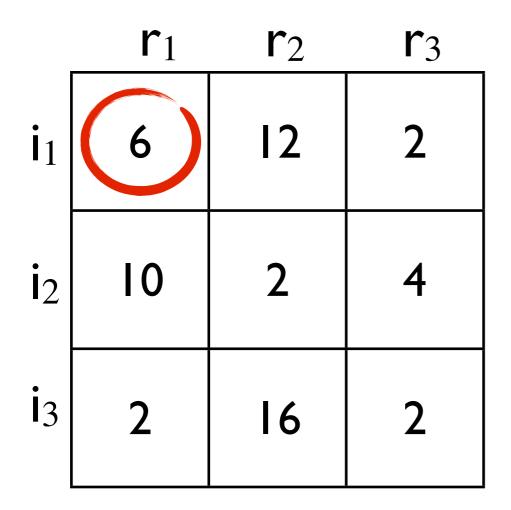


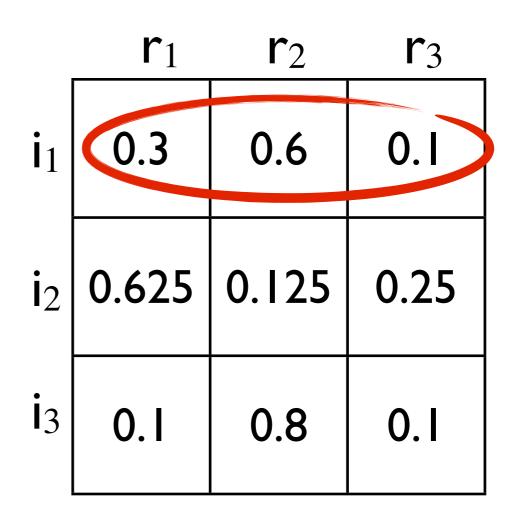
Sense Remapping at a high level

I. Co-label corpus with both sense types

2. Build a collocation matrix for senses

3. Construct a function to remap specific instances




$$i_i \rightarrow \{r_j\}$$

Naïve approach: map each induced sense to a single sense

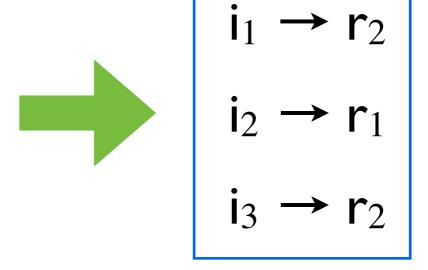
Step I: Count co-labeling of **Step 2**: normalize row induced and reference senses

values to be $p(r_i|i_i)$.

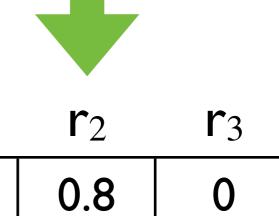
Naïve approach: map each induced sense to a single sense

	\mathbf{r}_1	\mathbf{r}_2	r ₃	
i_1	0.3	0.6	0.1	$i_1 \rightarrow r_2$
i 2	0.625	0.125	0.25	$\mathbf{i}_2 \rightarrow \mathbf{r}_1$
i 3	0.1	0.8	0.1	$i_3 \rightarrow r_2$

Step 3: Map each induced sense to the most likely reference sense



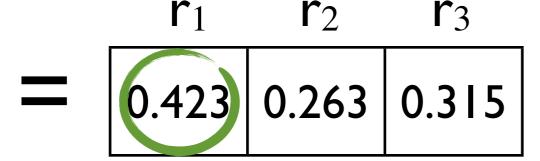
Naïve approach: map each induced sense to a single sense


Context with Graded Sense Labels

i ₁	i_2	i 3
0.7	0.2	0.1

0.2

Sum the ratings of each of the remapped senses r₁



Sense mapping from Agirre et al. (2006)

Step 3: multiply graded labeling by mapping matrix

<u>l</u> 1	12	I 3
0.3	0.5	0.2

	• 1	I Z	1 3
i 1	0.3	0.6	0.1
i 2	0.625	0.125	0.25
i 3	0.1	0.1	0.8

Select the highest weighted sense

r₁

Graded Variant: Relabel with *all* senses

Step 3: multiply graded labeling by mapping matrix

i 1	i 2	i 3
0.3	0.5	0.2

r_1	\mathbf{r}_2	r ₃
0.423	0.263	0.315

	r ₁	\mathbf{r}_2	r ₃
i 1	0.3	0.6	0.1
i 2	0.625	0.125	0.25
i 3	0.1	0.1	0.8

Use all the senses

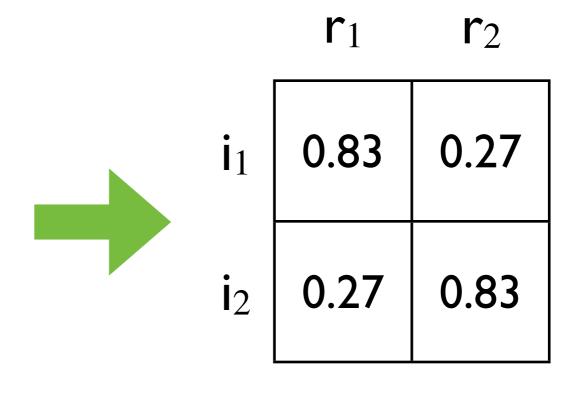
Issue: the matrix construction method ignores the graded ratings

Contexts

	i ₁ : 0.9	r ₁ :0.9		r ₁
C ₁	i ₂ : 0. I	r ₂ :0.1	. 1	7
	i ₁ : 0. l	r ₁ : 0 . I	"1	
C 2	i ₂ : 0.9	r ₂ :0.9	\mathbf{i}_2	3
_	i ₁ : 0. l	r ₁ :0.1	• 2	
C 3	i ₂ : 0.9	r ₂ :0.9		

\mathbf{i}_1	3	3
i 2	3	3

r2



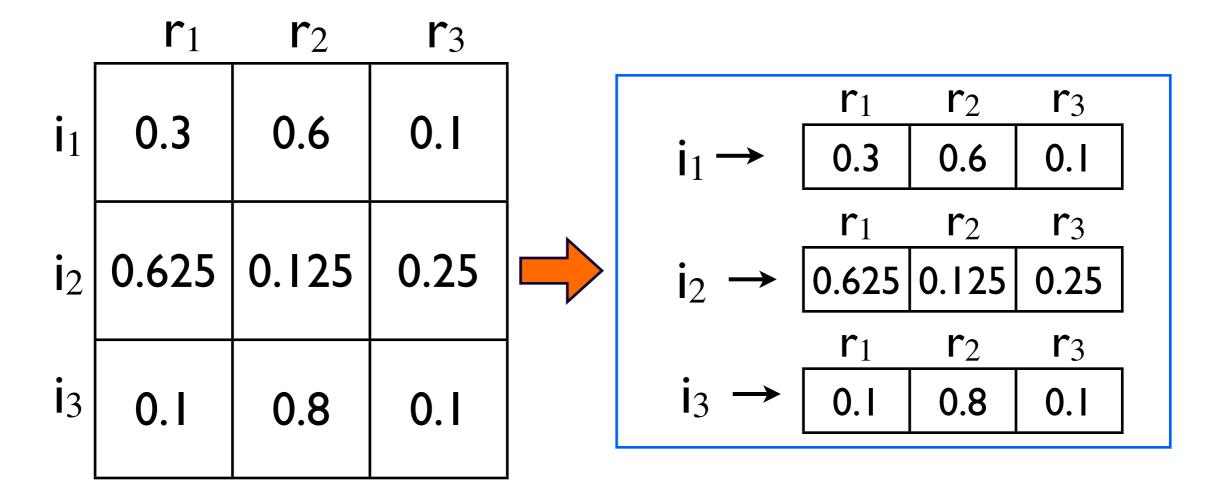
UCLA

Alternative: construct the co-label matrix by summing the product of the sense ratings

Contexts

	i ₁ : 0.9	r ₁ :0.9
C ₁	i ₂ :0.1	r ₂ :0.1
C a	i ₁ : 0. I	r ₁ : 0 . I
C 2	i ₂ : 0.9	r ₂ :0.9
Ca	i ₁ : 0. I	r ₁ : 0 . I
C 3	i ₂ : 0.9	r ₂ :0.9

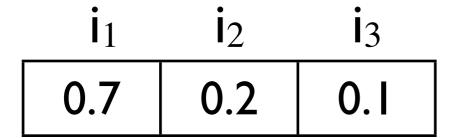
Compute the subsequent steps the same as Agirre et al. (2006)

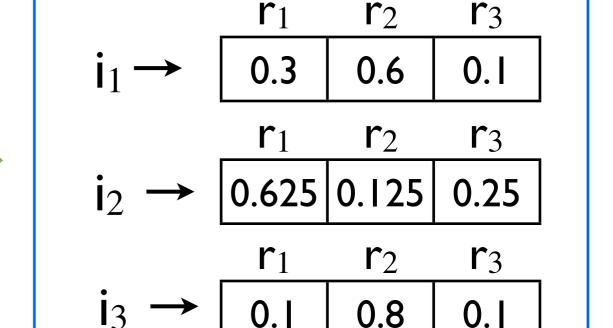


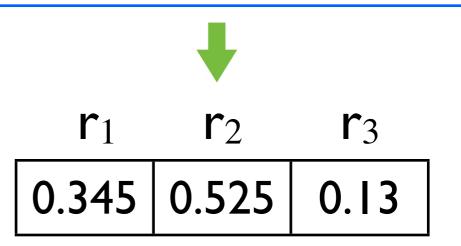
Equivalent to the Naïve approach with a vector mapping

Steps I and **2**: construct row-normalized matrix as before

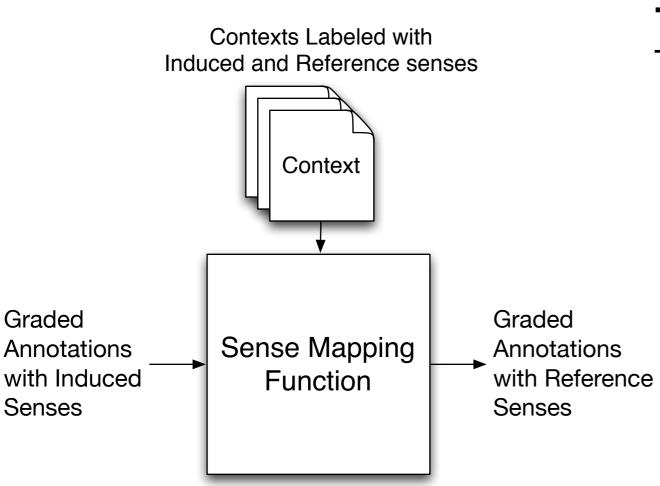
Step 3: Map each induced sense to a distribution over senses






Equivalent to the Naïve approach with a vector mapping

Context with Graded Sense Labels


Sum the induced senses' distributions, weighted by their ratings

Remapping Summary

Three Approaches

- Naïve
- Agirre et al. (2006)
 - Vector
 - Vector + Matrix reweighting

Talk overview

- Word Sense Disambiguation and Graded Senses Assignment
- Word Sense Induction
- Evaluating Graded Sense Assignments

Evaluating Graded Sense Annotation

She won the gold medal with her hard work.

wn₁: 0.6

wn₂: 0.4

wn₃: 0.0

wn₄: 0.0

Multiple evaluation objectives

She won the gold medal with her hard work.

 $wn_1: 0.6$

 $wn_2: 0.4$

wn3: 0.0

wn₄: 0.0

I. Which senses are applicable?

Multiple evaluation objectives

She won the gold medal with her hard work.

 $wn_1: 0.6$

wn₂: 0.4

wn₃: 0.0

wn₄: 0.0

I. Which senses are applicable?

2. How do senses differ in their applicability?

Multiple evaluation objectives

She won the gold medal with her hard work.

wn₁: 0.6

wn₂: 0.4

wn3: 0.0

wn₄: 0.0

I. Which senses are applicable?

2. How do senses differ in their applicability?

3. What is the applicability of each sense?

Detection: which senses are present?

She won the gold medal with her hard work.

wn₄: 0.0 wn₄: 0.0 wn₄: 0.2

Detection: 1.0 0.5 0.25

Jaccard Index

 $G \cap T$ $G \cup T$

Ranking: order the senses by their applicability

-0.2

She won the gold medal with her hard work.

	Test ₂ wn ₁ : 0.0		
wn ₂ : 0.0	wn ₂ : 1.0	wn ₂ : 0.3	wn ₂ : 0.4
wn ₃ : 0.5	wn ₃ : 0.0	wn ₃ : 0.0	wn ₃ : 0.0
wn ₄ : 0.2	wn ₄ : 0.0	wn ₄ : 0.0	wn ₄ : 0.0

Ranking: 1.0 0.33

Goodman and Kruskal's γ

- Computed much like Kendall's τ
- Most appropriate for comparing rankings with many ties

Perception: quantify the UCLA applicability of each sense

She won the gold medal with her hard work.

wn₄: 0.0 wn₄: 0.0 wn₄: 0.2

Cosine Similarity

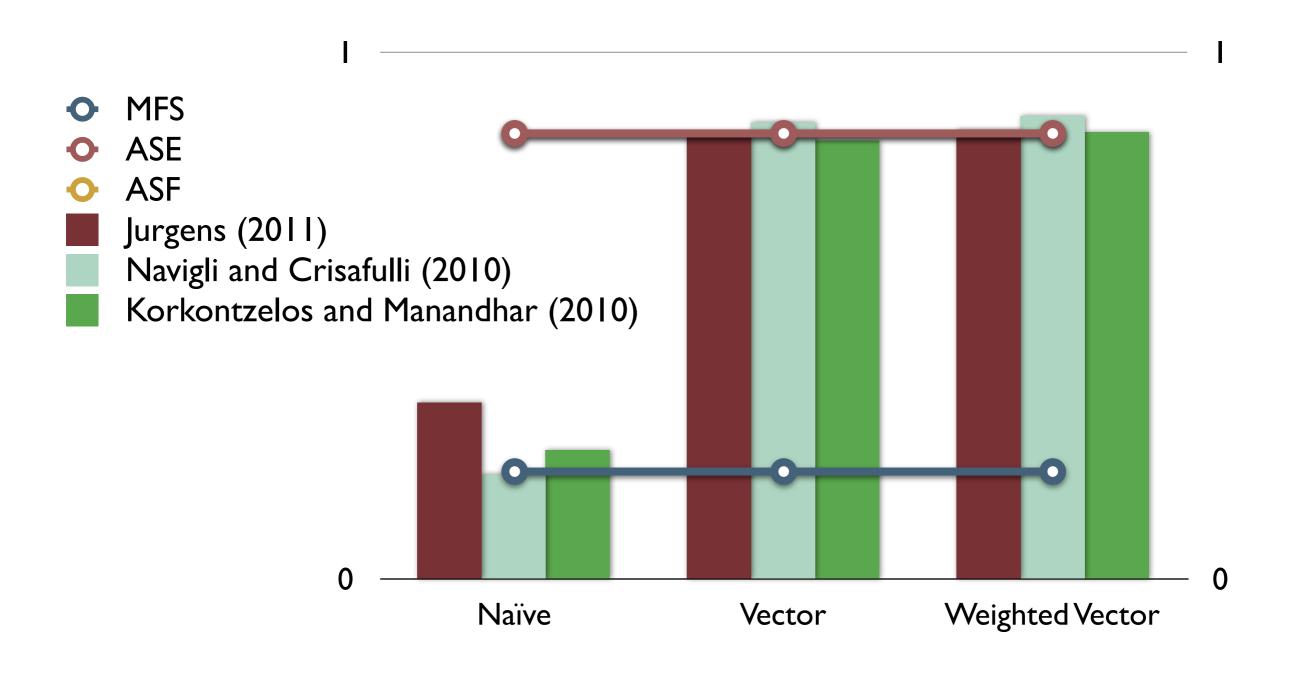
G · T ||G|| * ||T||

Perception: 0.98 0.55 0.41

Baselines

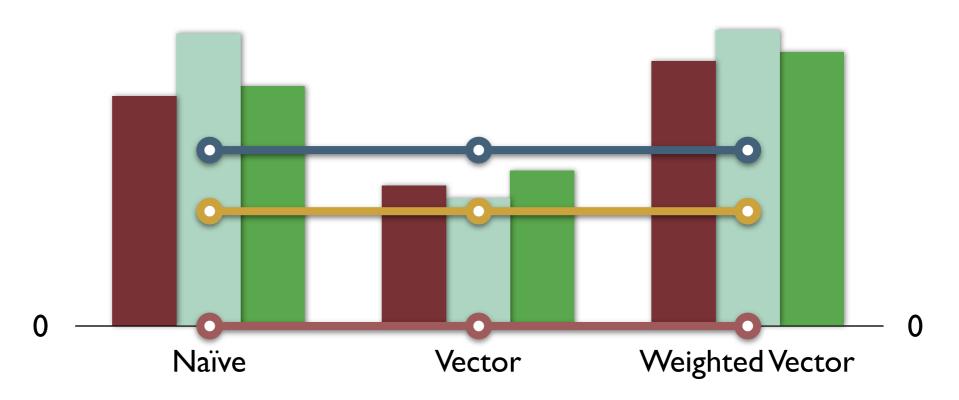
Sense assignments have a strong bias towards more frequent senses

- Most Frequent Sense (MFS)
- All Senses, ranked by Frequency (ASF)
- All Senses, equally ranked (ASE)

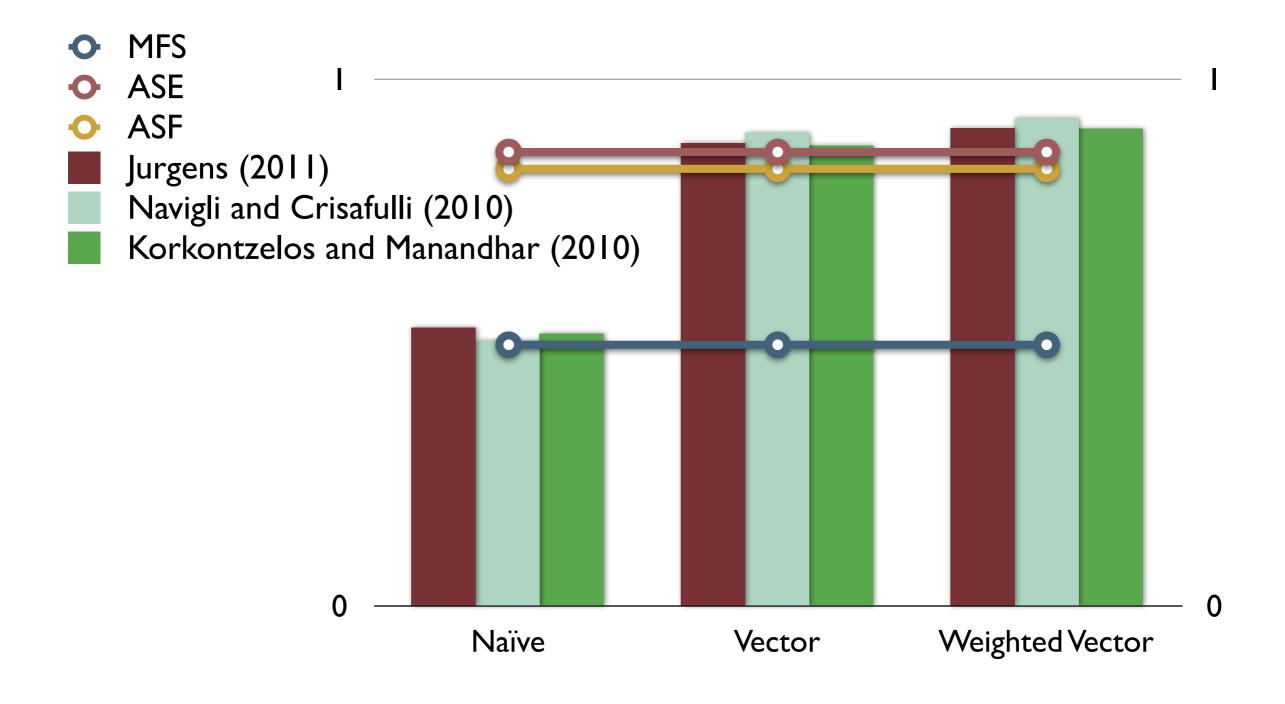

Experimental Setup

- Trained using the GWS Corpus provided by Erk et al. (2009)
- 8 terms: 3 nouns, 3 verbs, 2 adj. (4-7 senses each)
 - 50 contexts each
 - 3 annotators per context, average sense scores used as gold standard
- Used 80% to build sense mapping, 20% to test with cross validation

Perception Results



Ranking Results


- MFS
- ASE
- ASF
- Jurgens (2011)
- Navigli and Crisafulli (2010)
- Korkontzelos and Manandhar (2010)

Perception Results

Further Observations

- Approaches varied wildly in the number of senses labeled
 - Navigli and Crisafulli (2010) only labeled ~56%, but had very high precision (only 5% had > 1 label)
 - Jurgens (2011) ~2 senses on average to four words, and 60+ for the other four
- Ranking is much harder than Perception
 - A > B vs. A=.51 and B=.49

Take-aways

- WSI systems offer significant promise for automating Graded WSD
 - Seeding corpus annotation when WSD systems have too little training data
- Accounting for graded rating is essential in sense-mapping

Future Work

- Rethinking the Perception evaluation metric
 - Neither Cosine similarity nor Jensen-Shannon
 Diverge appear to be ideal measures
- Intrinsic clustering evaluations for partial cluster membership
- Task-based Evaluation for graded senses

Thank you!

jurgens@cs.ucla.edu

All models and data released as a part of the S-Space Package

https://github.com/fozziethebeat/S-Space

Thanks to Katrin Erk, Diana McCarthy, and Nicholas Gaylord for making GWS corpus available