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Abstract
Social relationships matter: being connected with another
person as a friend, enemy, or lover conveys very different
information. However, current community detection
methods simplify these relationships into binary
connections, thereby ignoring important distinctions in
how entities are connected. We highlight a new challenge
for community detection on multiplex networks where
entities share one or more edges, indicating different
relationships. Further, we propose a new algorithm for
finding communities in such networks and show promising
performance on synthetic and real-world networks.
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Introduction
Networks are an essential representation for modeling
entities and how those entities are connected.



Furthermore, the network’s edges may be annotated by
edge colors or types that indicate specific types of
connections between entities, e.g., people connected by a
different social relationships, organisms by different
environmental roles, or countries by different alliances and
treaties. These different types of connections carry with
them important distinctions, both in how the entities
relate with one another but also in how that connection
fits in the global organization of relationships.

Community detection aims to use these network
connections in order to identify groups of vertices that
correspond to meaningful subcomponents of the network,
e.g., groups of friends in a social network. Traditionally,
community detection methods have focused on networks
where nodes are connected by a single edge, which is
possibly weighted (c.f. [5, 7] for recent surveys of
community detection methods). However, many types of
real-world networks are incorrectly modeled as unimodal
networks with only one type of edge. For example, Figure
1 illustrates a simple, hypothetical social network with two
groups of friends who are enemies of each other. Whereas
the edge types reveal a clear separation in the two groups,
any approach that treats edges uniformly would have
significant difficulty separating the two groups solely on
the basis of their network connectivity.

Figure 1: A hypothetical social
network modeling friends and
enemies. Solid lines (blue)
indicate friends, while dashed
lines (red) indicate enemies.

While network modelers have long used edge types to
convey important relational distinctions, only recently
have community detection methods begun to leverage the
information in edge types [6, 8, 11, 10, 2]. Explicitly
modeling edge types offer two important benefits. First,
because the types can convey information about the
nature of the interactions, community detection can
better partition the network in such a way that reflects
the coherency of the communities’ connections. Second,

edge types provide a natural scaffolding to perform
community detection on multigraphs, or multiplex
networks, where entities may be connected by one or more
types of relations. These multiplex edges also reveal
communities that invisible to a single-mode analysis, such
embedded or strongly overlapping communities connected
by different edge type than the rest of the network, or
communities where connections between entities follow
patterns in which relations they share.

Therefore, we propose a new method for community
detection that uses a multi-modal relation-based analysis
instead of the common binary connectivity analysis. We
then analyze a synthetic and real-world network using the
algorithm, illustrating where edge type information reveals
significantly different and more informative communities
than if type information was not used. Last, we outline
several avenues for future research.

Relation-based Community Detection
We propose a novel approach to community detection in
multiplex networks that uses both local connectivity as
well as information from the edge types in order to
determine the communities. Fundamental to our approach
is the relation, which we define as all edges between two
vertices. We build upon recent advancements in
edge-based community detection [4, 1, 2] by directly
incorporating edge type information into our definition of
community quality.

Because information conveyed by the edge types will vary
from network to network, we introduce a new function σ

over the types that defines their similarity. For two edge
types, ti, tj , let σ(ti, tj) → [−1, 1] be the value indicating
the types’ similarities. While σ may be defined by the
investigator based on a priori knowledge of the network, σ



could also be defined using external ontologies to compare
relation labels, or through comparing labels with
data-driven approaches such as distributional semantics.
For example, in a social network modeling with edge types
represent communication topics, the type similarity could
be defined according to the terminology overlap between
the topics, thereby avoiding manual specification.

Cross and Parker (CP) [3] Net-
work Summary

Cross and Parker interviewed
employees at a European manu-
facturing research firm, located
in four cities. Interviews were
done for individuals in different
organizational positions and at
different levels of tenure at the
company.
Individuals were asked to rate
other individuals on a Likert
scale from 1–6 according to two
types of social knowledge: (1)
the degree to which they use in-
formation from other person to
accomplish their work, and (2)
their awareness of the other per-
son’s skills and knowledge. Re-
sponses of 1 indicate that the in-
dividual does not know the other
person.

Network Construction
Each individual is represented as
a node. For each question, a
directed edge is added from in-
dividual i to j if i answered
above 1 on the scale, indicat-
ing some level of familiarity with
j. Furthermore, each answer in
the scale was treated as a sep-
arate edge type, e.g., an aware-
ness level of 2 is a different edge
type from an awareness level of
5. The resulting network has 10
edge types, with 77 individuals
and 3901 edges.

Table 1: A description of the
multiplex social network gathered
by Cross and Parker.

Relation Comparison

The core of our method is based on the definition of edge
similarity, which is subsequently used to identify edge
partitions that give rise to communities. As a starting
definition for edge similarity, we build upon the definition
of Ahn et al. [1] which was defined for undirected,
untyped networks. For two edges, ei,k, ej,k, their
similarity is defined using the Jaccard Index of the set of
inclusive neighbors:

sim(ei,k, ej,k) =
N+

i ∩N+
j

N+
i ∪N+

j

(1)

where N+
i is the set containing vertex i and its neighbors.

This definition successfully captures the intuition that two
edges are similar if they share the majority of their
neighbors. However, a multiplex network allows for a
richer comparison of edge similarity that takes into
account both the number of connections to a node,
turning the set of neighbors into a multiset, as well at the
types of those connections.

To extend Eq. 1, we note the expectation that two
vertices are more likely to be in the same community if
the neighbors they have in common are connected by
similar relations. Therefore, we redefine Eq. 1 to capture
both the similarity of the edge types as well as the notion
of connectivity in a multiplex network. Let Nv be the
multiset of vertices connected to vertex v and Ri,j be the

set of edges connecting vertices i and j. The similarity of
two relations is defined as:

sim(Ri,k, Rj,k) =
f(Ni,Nj)

|Ni|2 + |Nj |2 − f(Ni,Nj)
(2)

where f(Ni,Nj) measures the degree of similarity between
the edges sets:

f(Ni,Nj) =
∑

z∈Ni∩Nj

∑

ei,z∈Ri,z

∑

ej,z∈Rj,z

σ(ei,z , ej,z)

Note that if σ=1 for identical edge types and 0 for all
others, Eq. 2 simplifies to the Tanimoto Similarity, which
is a generalization of the Jaccard Index used in Eq. 1 for
calculating the similarity of multisets. The relation
similarity defined in Eq. 2 is proportional to the
percentage of neighbors that are shared in common with
respect to the similarity of the edge sets connecting the
neighbors. Eq. 2 is maximized when i and j have identical
neighbors and the edges to those neighbors have maximal
similarity; and conversely, it is minimized when when i

and j have identical neighbors but those neighbors have
negative similarity, which indicates that i and j have
opposing relations to all their neighbors.

Clustering Relations and Identifying Communities

The relation similarity function in Eq. 2 allows us to rate
relationship according to how likely their corresponding
vertices should be in a community together. We adopt a
two-phase approach for community detection: (1)
multiple clustering solutions are generated at different
community granularities, and (2) solutions are evaluated
using a criterion function for intra-community connectivity
and similarity, ultimately selecting the solution with the
highest value. We first discuss how community solutions
are evaluated and then describe how they are generated.



An ideal individual multiplex community maximizes the
number of edges between its vertices, while
simultaneously maximizing the average similarity of the
edge types in the community. We build upon the
community density function of Ahn et al. [1] to define a
new criterion that incorporates both density and semantic
similarity. Let n be the number of vertices in a community
and m be the number of edges between the members of
that community. For a multiplex network with t types, the

maximum number of edges in a community is t×n(n+1)
2 ,

while the minimum is n− 1. Therefore, the density of a
community in terms of its edges is computed as

d(C) =
m− (n− 1)

t×n(n−1)
2 − (n− 1)

(3)

where d=0 if n=2.

We define the similarity of edges in community C as:

s(C) =
∑

ei,ej∈C|i6=j

σ(ei, ej) (4)

Therefore, we measure the total goodness of the

Figure 2: The community
membership of the friend-enemy
network from Fig. 1 using our
agglomerative clustering method.
The solution identifies three
communities: two consisting of
only friends, and a third
community made of individuals
who are enemies of each other.
Community membership is shown
by colors in the vertices’ symbols.
In contrast, the purely
edge-based solution of [1] merges
the network into a single
community.

community solution with k communities as the sum of
each community’s density relative to the total number of
edges in the network and weighted by the global similarity
of relations within the communities:

2

kM
∑k

i=1
|Ci|(|Ci|−1)

2

k
∑

i=1

d(Ci)s(Ci) (5)

By weighting the density according the clustering
similarity, this equation penalizes structurally consistent
communities that have highly dissimilar edge types
connecting their vertices. We normalize by the global
intra-community similarity rather than the average

community similarity in order to take into account the
difference in community sizes so that a large self-similar
community has more weight than a small dissimilar
community.

The final community solution is computed by creating
communities from each of the relation clusters, where a
community contains all of the vertices connected by
relations in that cluster. Relations are clustered using
hierarchical agglomerative clustering, which continuously
merges the most similar clusters according to a criteria
function in order to build a dendrogram of how all
relations are connected. We adopt the
computationally-efficient strategy of Ahn et al. [1] and
use the single-link criterion, which merges the two clusters
containing the most similar relations according to Eq. 2
that are not currently in a cluster together. The
agglomerative clustering produces a dendrogram over all
relations, which is cut at each level to produce a
community solution that is evaluated according to Eq. 5.
The solution that maximizes Eq. 5 is selected as the
results. For a network with R relations, our method
requires only O(R2) time, which is sufficient to easily
scale to networks with hundreds of thousands of edges.

Experiments
As an initial study, we consider both the synthetic
friend-enemy network from Fig.1 and the real-world social
network of researcher gathered by Cross and Parker (CP)
[3], described in Tab. 1.



(a) (b)

Figure 3: Figure 3a highlights the 10 communities found in the CP network using our
method. Figure 3b shows the 20 communities found using the method of Ahn et al. [1].
Each vertex color corresponds to a specific community membership. For simplicity,
parallel edges are visualized as a single edge.

Central to our method is the selection of the σ function.
Therefore, in the friend-enemy network, we considered a
range of definitions for σ

σ(t1, t2) =

{

t1 = t2 1
t1 6= t2 x

where x defines the similarity of non-equal types. Figure 2
shows the resulting communities when x=0, which match
the expectation that friends and enemies be segregated
into separate communities. Furthermore, our analysis
showed that the method is not sensitive to the value of x,
with all solutions having −1 ≤ x < 0.8 generating the
same community divisions.

The CP network contains edges types in two sets T1 and
T2, reflecting the two different social relations. We define
σ by noting that each type ti can be associated with the
weight of the relation w(ti) as defined in the original
Cross and Parker survey. Comparisons between types in
the same set may be made according to the relative
differences in their weights. Therefore we define σ as:

σ(t1, t2) =

{

t1 ∈ Ti ∧ t2 ∈ Ti 1− |w(t1)−w(t1)|
5

t1 ∈ Ti ∧ t2 ∈ Tj 6=i 0

Fig. 3 shows the resulting communities, in comparison
with those found by the method of Ahn et al. [1].

The communities found by our method reveal two notable
patterns. First, communities strongly correspond to the
geographic locations of individuals in the CP network,
detailed in Table 2. Six of the communities correspond to
geographically-homogeneous individuals. An analysis of
the remaining four geographically-heterogeneous
communities revealed each was connected by a single
individual who acted as a bridge between the two or more
geographic areas, with multiple individuals from each
location being familiar with the person. These bridge
individuals appear in the center of network shown in Fig.
3a. In contrast, the purely link based approach of Ahn et
al. [1] finds communities that roughly correspond to two
of the locations and a large community that blends the
remaining location. Our analysis did not reveal in further
connection from individuals’ tenure or organization level
to the communities in their solution, despite having
identified twice as many communities. Overall, we view
our method as providing an insightful exploratory tool in
identifying salient structure of the network from its
multiplex relations alone.



Conclusion and Future Work
We have raised the issue of how to discover communities
in multiplex networks where the edge type convey
important information on the different types of
relationships. Accordingly, we have proposed a new
approach to community detection based on an edge type
similarity function σ. Our initial results suggest that this
method can identify communities that meet expectations
of which entities should be grouped.

Furthermore, our results raise several significant questions
for future work. First, community detection is frequently
evaluated in terms of network modularity [9], which tests
the community partitioning relative to a null model.
However, many modularity definitions are defined in terms
of binary, weighted, or directed connections, and therefore
do not take into account the parallel edges present in
multiplex networks. Future work is needed to define
modularity in multiplex networks to quantify the goodness
of a particular solution. Second, the present work has only
considered edge types. However, many networks contain
distinct vertex types, or additional vertex properties.
Future work is also needed to assess how these properties
can be incorporated into our definitions of community
quality. Last, future work is needed to establish

Com. Pa. Fr. Wa. Ge.

1 - - - 1.00
2 - 0.63 - 0.37
3 0.35 - 0.33 0.33
4 - 1.00 - -
5 - - 0.94 0.06
6 - 0.96 - 0.04
7 - - - 1.00
8 0.94 - - 0.06
9 0.28 0.45 0.27 -
10 0.52 - 0.48 -

Table 2: The percentage of
individuals in each community
from Fig. 3a located in cites
Paris, Frankfurt, Warsaw, or
Geneva.

standardized mulitplex network datasets and
corresponding community soluations to enable better
comparisons between approaches.
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