Geolocation Prediction in Twitter Using Social Networks: A Critical Analysis and Review of Current Practice

David Jurgens, Tyler Finethy, James McCorriston, Yi Tian Xu, Derek Ruths jurgens@cs.mcgill.ca, \{tyler.finethy,james.mccorriston,yi.t.xu\}@mail.mcgill.ca, derek.ruths@mcgill.ca

Introduction and Motivation

Geolocated social media data provides a powerful source of information about place and regional human behavior. Because little social media data is geolocation-annotated, geoinference techniques serve an essential role for increasing the volume of annotated data by predicting its origin location. One major class of inference approaches has relied on the social network of Twitter, where the locations of a user's friends serve as evidence for that user's location. While many such inference techniques have been recently proposed, we actually know little about their relative performance, with methods differing in the evaluation metrics, testing setups, and amount of data. We conduct a critical evaluation of state of the art by testing nine geolocation inference techniques on identical data using three newly-proposed comprehensive evaluation metrics.

Method
Davis Jr. et al (2011) Li et al. (2012)
Li, Wang, and Chang (2012) Rout et al (2013) McGee, Caverlee, and Cheng (2013) Kong, Liu, and Huang (2014) Backstrom, Sun, and Marlow (2010) Jurgens (2013) Compton, Jurgens, and Allen (2014)

\% Labeled
40.3\%

100\%
100\%
100\%
100\%
22.5\%
25.0\%
5.34\%

The nine evaluated methods and the conditions in
which each method was originally tested

Evaluation Metrics

Area Under the Curve (AUC)
Many methods have been evaluated using a Cumulative Distribution Function (CDF) that shows the probability of the distance error when inferring the location of a post. While visually illustrating, these curves are not comparable across works. Therefore, we propose using a form of AUC calculated from the CDF to quantify prediction performance.
 Median-Max
Some analyses rely on having users located, rather than posts. To quantify how accurate a method is at the user-level, we compute the maximum post-prediction error per user and report the median of these errors. This metric has an intuitive interpretation: half of the users have a maximum error of at most this distance

Coverage

Methods vary in how much data for which they are able to make a prediction. Therefore, we include a third metric, Coverage, that measures the percentage of data able to be located by the geoinference method, where data may be users or posts.

Q2: Are self-reported locations more beneficial than GPS locations?

Setup - The text from users' profile location fields were extracted and matched with the location names in one of four gazetteers: (1) GeoNames, (2) DBPedia, (3) GeoLite, and (4) a gazetteer built from queries to Google's reverse geocoder service. The methods were then tested using the same cross-validation setup as when using GPS-derived locations.

Q1: How do the methods compare?

Setup - All methods were tested using five-fold cross validation on a dataset built from a one-month sample of Twitter (15.2M users, 26M edges). The baseline comparison method infers locations by simply picking a random neighbor's location to use a user's location. Below we show results when the ground-truth is derived from GPS-annotated data.

Incorporating multiple passes through the data can provide significantly higher coverage
without much loss in precision

Q3: How stable is performance over time?

Setup - All methods were trained on a full month of data and then asked to predict the locations of posts for each day in the following month. Results are shown when using GPS-derived locations.

Get the code: https://github.com/networkdynamics/geoinference

Want to see how well your method does?
 Try out our platform and API for geoinference on the same datasets in this paper: http://networkdynamics.org/resources/geoinference

Backstrom, L.; Sun, E.; and Marlow, C. 2010. Find me if you can: improving
geographical prediction with social and spatial proximity. In Proceedings of geographical predic
Davis Jr, C.; Pappa, G.; de Oliveira, D.; and de LArcanio, F. 2011. Inferring the Davis J r, C.: Pappa, G.; de eiveira, D.; and de LArcanjo, F. 2011. Inferring the
location of twitter messages based on user relationships. Transactions in G/S 15(6):735-751.
Compton, R.: Jurgens, D. and Allen, D. 2014 Geotagging one hundred million twitter accounts with total variation minimization. In Proeceedings of the IEEE International Conference on Big Data.

Jurgens, D. 2013. That's what friends are for: Inferring location in online socia media platforms based on social relationships. In Proceedings of ICWSM
 Kong, L.: Liu, Z.; and Huang, Y. 2014. Spot: Locating social media users based

 on social network context. Proceedings of the VLDB Endowment 7 (13).[^0]
[^0]: i, R.; Wang, S.; Deng, H.; Wang, R.; and Chang, K. C.- C. 2012. Towards social user profiling: unified and dis criminative influence model for inferring home locations. In Proceedings of KDD, 1023-1031. ACM.
 McGee, J.; Caverlee, J. A.; and Cheng, Z. 2013. Location prediction in social media based on tie strength. In Proceedings of CIKM, 459-468. ACM.

